
Introduction We love C++, is it?

My ideas for a talk. . .

. . .

. . . let's visit #random on slack for an idea

Michele Caini (skypjack) Idioms Novemeber 30, 2019 1 / 24

Introduction We love C++, is it?

Italian C++ Community on Slack

Michele Caini (skypjack) Idioms Novemeber 30, 2019 2 / 24

Introduction We love C++, is it?

Modern C++: yay or nay?

So, to sum up:

C++ could not be worse than this.

Modern C++ is even worse than the good, old C++98.

The Standard Template Library is all wrong, no doubts about it.

Containers have some (many?) design problems.

The C++ Standards Committee is focusing only on useless things.

. . . and so on.

Join us on slack and leave your complaint! :)

Is it really like this? Let's �nd out together.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 3 / 24

Introduction We love C++, is it?

Idioms
You're doing it right

Michele Caini

skypjack

Novemeber 30, 2019

Released under CC BY-SA 4.0

Michele Caini (skypjack) Idioms Novemeber 30, 2019 4 / 24

https://www.italiancpp.org
https://creativecommons.org/licenses/by-sa/4.0/

Idioms You're doing it right

C++ has its idioms

Programming idioms

An idiom is a phrase that doesn't make literal sense, but makes sense once you're

acquainted with the culture in which it arose. Programming idioms are no di�erent.

They are the little things you do daily in a particular programming language or paradigm

that only make sense to a person after getting it

Courtesy of WikiWikiWeb.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 5 / 24

Idioms You're doing it right

Good old one: erase-remove

Intent

To eliminate elements from a container.

Some idioms have never changed over time. . .

template <typename Type >

inline void cleanup(std::vector <Type > &vec , const Type &value) {

auto it = std:: remove(vec.begin(), vec.end(), value);

vec.erase(it , vec.end ());

}

. . . and they probably never will.

Heads up!

Don't forget about copy&swap, another glorious hero of all time.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 6 / 24

Idioms You're doing it right

Evergreen idioms

A better (?) de�nition

A programming idiom is the usual way to code a task in a speci�c language.

Many other idioms are with us from the beginning:

Resource Acquisition Is Initialization (RAII).

Curiously Recurring Template Pattern (CRTP).

Pointer to Implementation (PImpl).

Copy & Swap.

. . .

Some others have been deprecated instead and we won't miss them.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 7 / 24

Idioms You're doing it right

Null pointer

Intent

To distinguish between 0 and a null pointer.

In a perfect world it would be:

#define NULL ((void *)0)

If only this were possible: char * str = NULL;

void * doesn't convert to T * but int-to-pointer conversions exist:

#define NULL 0

Problem: 0 vs 0L and overload resolution.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 8 / 24

Idioms You're doing it right

Null pointer

Intent

To distinguish between 0 and a null pointer.

The nullptr idiom (based on the return type resolver idiom):

const struct nullptr_t {

template <class T> operator T *() const { return 0; }

template <class C, class T> operator T C:: *() const { return 0; }

private:

void operator &() const;

} nullptr = {};

Sounds familiar? char *ch = nullptr;

Now a keyword of the language.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 8 / 24

Idioms You're doing it right

Move constructor

Intent

To transfer the ownership of a resource held by an object to another object.

It takes advantage of some less known features of the language:

template <class Type > struct proxy { Type *res; };

template <class Type > struct movable {

movable(Type *r = 0) : res(r) {}

~movable () { delete res; }

movable(movable &o): res(o.res) { o.res = 0; }

movable(proxy <Type > o): res(o.res) {}

movable & operator =(movable &o) { /* copy -and -swap. */ }

movable & operator =(proxy <T> o) { /* copy -and -swap. */ }

void swap(movable &o) { std::swap(res , o.res); }

operator proxy <T>() { proxy <T> p; p.res = res; res = 0; return p; }

private:

Type *res;

};

Michele Caini (skypjack) Idioms Novemeber 30, 2019 9 / 24

Idioms You're doing it right

Move constructor

Intent

To transfer the ownership of a resource held by an object to another object.

To sum up:

In case of non-const reference we steal the resource.

In case of const reference we export the resource through a proxy.

The source is set in a valid but unspeci�ed state.

Indirection, unique ownership model.

Now an utility (as in <utility>):

my_type other{std::move(instance)};

Michele Caini (skypjack) Idioms Novemeber 30, 2019 9 / 24

Idioms You're doing it right

Final class

Intent

To prevent a class from further subclassing or inheritance.

friend-ness is the key, private-ness is the way:

class base {

~base() {}

friend class derived;

};

struct derived: base { /* ... */ };

Let's inherit from derived:

struct my_class: derived { /* ... */ };

my_class instance;

Errors occur only in case of instantiations but it works.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 10 / 24

Idioms You're doing it right

Final class

Intent

To prevent a class from further subclassing or inheritance.

Nowadays final is a keyword resolved no matter what:

struct derived final { /* ... */ };

struct my_class: derived { /* ... */ };

It works always, everywhere.

Heads up!

Thanks to override we've also less headaches.

struct derived: base { void func() override { /* ... */ } };

Michele Caini (skypjack) Idioms Novemeber 30, 2019 10 / 24

Idioms You're doing it right

Enable if

Intent

To allow function overloading based on arbitrary properties of types.

SFINAE lovers thank:

template <bool , typename = void >

struct enable_if {};

template <typename Type >

struct enable_if <true , Type > {

typedef Type type;

};

Heads up!

is_same, is_base_of, is_invocable, void_t, decay_t, . . .

Michele Caini (skypjack) Idioms Novemeber 30, 2019 11 / 24

Idioms You're doing it right

Enable if

Intent

To allow function overloading based on arbitrary properties of types.

std::, you're doing it right:

template <typename Type , typename Func >

typename std::enable_if <std:: is_integral_v <Type >>::type

void do_something(Func func) {

if constexpr(std:: is_invocable <Func , Type >:: value) {

// ...

} else {

// ...

}

}

Helper types (_t) and variable templates (_v) did the rest.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 11 / 24

Idioms You're doing it right

C++ evolves, idioms evolve

What really is an idiom?

A language-speci�c way of solving a problem that can arise from a lack.

Many other idioms have been deprecated over time:

Safe bool (welcome explicit).

Type generator (welcome alias templates).

Shrink-to-�t (welcome .shrink_to_fit()).

Type safe enum (welcome enum class).

Traits and utilities of any type.

. . .

Some others have been revised in a more modern key (as in modern C++).

Michele Caini (skypjack) Idioms Novemeber 30, 2019 12 / 24

Idioms You're doing it right

Variadic template and pack expansion

Intent

To de�ne template parameter lists of any size and consume them.

Old-fashioned variadic templates:

template <typename T1>

void func(T1 t1) { /* ... */ }

template <typename T1, typename T2>

void func(T1 t1 , T2 t2) { /* ... */ }

// ...

template <typename T1, typename T2, typename T3, typename T4, typename T5>

void func(T1 t1 , T2 t2, T3 t3, T4 t4, T5 t5) { /* ... */ }

// ...

I've seen things that you people wouldn't believe.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 13 / 24

Idioms You're doing it right

Variadic template and pack expansion

Intent

To de�ne template parameter lists of any size and consume them.

True variadic templates introduced new short-lived idiom(s):

template <typename ... Func >

void invoke_all(Func ... func) {

int _[]{ 0, (func(), 0)... };

(void)_;

}

Another option was recursive functions with fallback.
There was no (easy) way to unfold a parameter pack.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 13 / 24

Idioms You're doing it right

Variadic template and pack expansion

Intent

To de�ne template parameter lists of any size and consume them.

Fold expressions solved the problem:

template <typename ... Func >

void invoke_all(Func ... func) { (func(), ...); }

In fact, they gave us much more:

template <auto ... Test , typename ... Func >

int invoke_all(Func ... func) {

(Test() || ...) ? (0 + ... + func ()) : 0;

}

Michele Caini (skypjack) Idioms Novemeber 30, 2019 13 / 24

Idioms You're doing it right

Include guard macro

Intent

To allow inclusion of a header �le multiple times.

#ifndef MY_GUARD

#define MY_GUARD

Dear, old inclusion guard macros:

Compile-time scalability: for each TU, parse and include headers.

Fragility: active macros matter, such as #define std "Standard"

Agree on disagree: many years, no convergence. To __ or not to __?

All or nothing: things are private in name only, not in fact.

Not to mention the use of pragma once.

#endif // MY_GUARD

Michele Caini (skypjack) Idioms Novemeber 30, 2019 14 / 24

Idioms You're doing it right

Include guard macro

Intent

To allow inclusion of a header �le multiple times.

A module is a producer that knows what to export:

export module hello;

export const char * message () { return "Hello , world!"; }

Consumers see only public stu�:

import hello;

int main() { std::cout << message () << std::endl; }

It took only 30 years to get them but here they are �nally!

Michele Caini (skypjack) Idioms Novemeber 30, 2019 14 / 24

Idioms You're doing it right

Comparable object

Intent

To provide consistent relational operators for a type.

Making a type comparable has never been easier:

De�ne operator== and operator!=.

De�ne operator< and operator<=.

De�ne operator> and operator>=.

Verbosity to the rescue. Hands up who has never done this:

operator !=(T lhs , T rhs) -> !(lhs == rhs)

Those are the things that make you hate the language.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 15 / 24

Idioms You're doing it right

Comparable object

Intent

To provide consistent relational operators for a type.

With the spaceship operator a compiler will generate everything for me:

auto operator <=>(const T &) const = default;

Allow out of order comparisons and non-default semantic:

std:: strong_ordering std:: weak_ordering std:: partial_ordering

std:: strong_equality std:: weak_equality

Support indistinguishable/distinguishable, incomparable/comparable values.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 15 / 24

Idioms You're doing it right

Function object (aka functor)

Intent

To create objects that look like functions.

Function like objects were rather common some time ago:

struct functor {

void operator(int value) { /* ... */ }

};

// ...

std:: for_each(first , last , functor ());

Many objects, more code to maintain, no way to design one-o� solutions.
They also had pros though: they were reusable.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 16 / 24

Idioms You're doing it right

Function object (aka functor)

Intent

To create objects that look like functions.

Nowadays we have (possibly generic) lambda functions:

std:: for_each(first , last , [](int value) { /* ... */ });

std:: for_each(first , last , [](auto value) { /* ... */ });

We are also going to have everything we want:

std:: for_each(first , last , []<typename ... Args >(Args &&... args) {

/* ... */

});

No more std::forward<decltype(Args)>(args)...!

Michele Caini (skypjack) Idioms Novemeber 30, 2019 16 / 24

Idioms You're doing it right

Iterator range

Intent

To specify a range without worrying about the data structure.

Initially, it must have seemed like a good idea:

std:: for_each(container.begin(), container.end(), std::move(func));

Among the other bene�ts:

Generic algorithms.

Write it once, use it everywhere.

No matter what our container is.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 17 / 24

Idioms You're doing it right

Iterator range

Intent

To specify a range without worrying about the data structure.

Of course, �ltering and then transforming values isn't that good:

std::vector <int > num = { 0, 1, 2, 3, 4, 5 };

std::vector <int > even;

std:: copy_if(num.begin(), num.end(), std:: back_inserter(even),

[](int n) { return n % 2 == 0; });

std::vector <int > square;

std:: transform(begin(even), end(even), std:: back_inserter(square),

[](int n) { return n * n; });

Many problems, algorithms aren't even composable.
Range-based for loop didn't add much here.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 17 / 24

Idioms You're doing it right

Iterator range

Intent

To specify a range without worrying about the data structure.

Ranges make the whole thing much more intuitive:

auto res = num

| ranges ::view:: filter ([](int n) { return n % 2 == 0; })

| ranges ::view:: transform ([](int n) { return n * n; });

Using iterators without having to deal with iterators.
Idioms disappear when raised to a higher level.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 17 / 24

Idioms You're doing it right

The idiom that made history

From C++98 to C++20

A journey along N revisions and through many changes.

There is an idiom that more than others:

Meets a need that we all have sooner or later.

Has existed since the dawn and will always exist.

Has evolved a revision of the standard at a time.

Is a proof of how the language has improved in many respects.

Its name is. . .

Michele Caini (skypjack) Idioms Novemeber 30, 2019 18 / 24

Idioms You're doing it right

Member detector

Intent

To detect a speci�c member attribute, function or type in a class.

Not so modern C++:
template <typename T>

struct detector {

struct fallback { int x; };

struct derived: T, fallback {};

template <typename U, U> struct check;

typedef char one [1]; typedef char two [2];

template <typename U> static one & func(check <int fallback :: *, &U::x> *);

template <typename > static two & func (...);

public:

enum { value = sizeof(func <derived >(0)) == 2 };

};

To use as detector<my_type>::value with enable_if or similar.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 19 / 24

Idioms You're doing it right

Member detector

Intent

To detect a speci�c member attribute, function or type in a class.

One-o� solution in Modern C++:

template <typename T> auto f(int)

-> decltype (&T::x, void ()) { /* ... */ }

template <typename T> void f(char) { /* ... */ }

template <typename T> void f() { return f<T>(0); }

Tag dispatching and decltype work like a charm together.

Heads up!

Do you remember the choice trick?

Michele Caini (skypjack) Idioms Novemeber 30, 2019 19 / 24

Idioms You're doing it right

Member detector

Intent

To detect a speci�c member attribute, function or type in a class.

Structured solution in Modern C++:

template <typename T, std::void_t <>>

struct has_x: std:: false_type {};

template <typename T>

struct has_x <T, std::void_t <decltype (&T::x)>>: std:: true_type {};

template <typename T>

void f() {

static_assert(std::has_x <T>:: value);

// ...

}

Use std::enable_if_t for a compile-time if-else-like statement.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 19 / 24

Idioms You're doing it right

Member detector

Intent

To detect a speci�c member attribute, function or type in a class.

if constexpr reduced the necessity for SFINAE/static_assert:

template <typename T>

void f() { if constexpr(std::has_x <T>:: value) { /* ... */ } }

Concepts make it possible to no longer pollute function declarations:

template <class Type >

concept HasX = requires(Type type) { type.x; };

template <HasX Type >

void f() { /* ... */ }

Michele Caini (skypjack) Idioms Novemeber 30, 2019 19 / 24

Idioms You're doing it right

Idioms: you're doing it right

Many other idioms have evolved in the meantime but let's sum it up:

C++ could��HHnot be better than this but it's pretty good already.

Modern C++ has given us a lot and much more awaits us.

The standard template library is improving a little at a time.

Containers have fewer problems than they once had.

The C++ Standards Committee is doing a good job overall.

Join us on slack and leave your���
��XXXXXcomplaint feedback! :)

Because we like to complain but all in all we love C++.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 20 / 24

Idioms You're doing it right

The curious case of std::shared_ptr

The class template you don't expect

Someone even wanted to show us what it means to exploit idioms.

std::shared_ptr is as elegant as it's practical:

Smart pointer: I said smart, not auto_ptr.

Intrusive reference counting: more or less, due to shared ownership.

Type erasure: std::shared_ptr<void>.

CRTP: std::enable_shared_from_this<T>.

Who knows what others. . .

It put idioms into practice without many of us even realizing it.

Michele Caini (skypjack) Idioms Novemeber 30, 2019 21 / 24

Idioms You're doing it right

Standard Template Library meets Idioms

Examples at hand

The Standard Template Library is a great resource to learn from.

std::shared_ptr isn't the only case of idioms though:

std::unique_ptr: another smart pointer.

std::variant: a safe tagged union.

std::optional: an alternative to returning a pointer.

std::any: type erasure in the guise of a class.

std::cout and the others: nifty counter.

<algorithm> and containers: a jumble of idioms.

. . .

Michele Caini (skypjack) Idioms Novemeber 30, 2019 22 / 24

The time is (probably) over Questions?

Questions?

Italian C++ Conference 2019

Novemeber 30, Parma

Michele Caini (skypjack) Idioms Novemeber 30, 2019 23 / 24

https://www.italiancpp.org

References Beyond the talk

Links

More C++ Idioms

What is a programming idiom?

Programming idiom

C++ patterns

Michele Caini (skypjack) Idioms Novemeber 30, 2019 24 / 24

https://en.wikibooks.org/wiki/More_C++_Idioms
https://stackoverflow.com/questions/302459/what-is-a-programming-idiom
http://wiki.c2.com/?ProgrammingIdiom
https://cpppatterns.com/

	Introduction
	We love C++, is it?

	Idioms
	You're doing it right

	The time is (probably) over
	Questions?

	References
	Beyond the talk

